CONTENTS

ANCIENT HISTORY

Aleksandra SOLOVEVA
POSSIBLE THRACIAN AND SCYTHIAN INFLUENCE ON THE DEVELOPMENT OF THE LEGEND OF THE ARGEAD DYNASTY’S ORIGIN ... 5

Pedro TRAPERO Fernández
ROMAN AGRONOMIC KNOWLEDGE OF VITICULTURE THROUGH LUCIUS COLUMELLA AND HIS UNCLE MARCUS IN HISPANIA .. 15

NUMISMATICS

Cristian GĂZDAC, Vlad-Andrei LĂZĂRESCU, Sorin COCIȘ
COINS IN ARCHAEOLOGICAL CONTEXT (III). THE VICUS OF THE AUXILIARY FORT FROM SUTOR (ROMANIA, SĂLAJ COUNTY) ... 27

ARCHAEOLOGICAL MATERIAL

Marius-Mihai CIUTĂ, Anamaria TUDORIE
NEW DATA ABOUT THE “WHITE PAINTED POTTERY” CULTURAL HORIZON IN TRANSYLVANIA ... 81

Cristian Ioan POPA, Dan George ANGHEL
THE ANTHROPOMORPHIC PLASTICS OF PETREȘTI CULTURE. NEW DATA ... 91

Denis TOPAL, Andrea CESARETTI, Roberto DAN
CEREMONIAL AKINAKES FROM FILIPPOVKA BETWEEN THE CONTEXT, CHRONOLOGY, AND ICONOGRAPHY 133

Constantin BĂRBULESCU, George Cristian CURCĂ, Mariana ROȘU, Ioana POROSNICU, Bogdan I. BITA, Ion TISEANU, Ovidiu Vasile UDRESCU
AN ANTHROPOLOGICAL-MULTIDISCIPLINARY ANALYSIS OF THE CINERARY REMAINS DISCOVERED AT OCNIȚA - BURIDAVA. PARS EST IN TOTO ET TOTUM EST IN PARTE 149

Ștefan VASILACHE
A SARMATIAN HORSE-RIDER AT THE COURT OF THE DACIAN KINGS. THE SIGN (II) ... 193

Mustafa BASHAR, Francisco Javier ESQUIVEL, José Antonio ESQUIVEL
ROMAN OIL LAMP OF TERRACOTTA ON SYRIAN COAST: STATISTICAL ANALYSIS ... 225

Gregory Douglas WEAR
ON THE FORT BOVISAND ANCHOR STOCK CORE 235

DIGITAL AND STATISTICAL
ANCIENT HISTORY AND ARCHAEOLOGY

Sebastian HEATH
ESTIMATING AND MAPPING ROMAN AMPHITHEATER SEATING CAPACITY ... 239
Abstract: An alleged ancient lead anchor stock core of Mediterranean design, which had spent many years under the stairs in the lobby leading to the bar at Fort Bovisand, was transferred to Plymouth City Museum in May 2010. Due to the possible overlap of British and Mediterranean lead isotope ratios, it was decided to refrain from sample extraction and provenance analysis. With reference to typological and historical data, particularly comparable artefact discoveries from in and outside of the Mediterranean as well as the absence of evidence for significant lead exploitation before the Roman Conquest, this article will argue that the object is probably not British.

Keywords: Anchor Stock Core; Fort Bovisand; Plymouth; Lead Mining; Non-Invasive Provenancing.

In May 2010, a lead object (Figures 1-5) which had spent many years under the stairs in the lobby leading to the bar at Fort Bovisand near Plymouth (Devon, UK), was presumed to be an anchor stock core of Classical Greek design, and moved to Plymouth City Museum (now The Box Plymouth) where it received accession number AR.2010.155.

Such a core would have been formed within a hollowed wooden beam for an anchor stock, in which molten lead was poured, to increase the overall weight of the anchor. The stock's purpose was to orient a fluke to dig into the seabed (Figure 4). The hollowed orifice will have been wider at the bottom, narrowing towards the top, so the solidified core could not fall out. It is trapezoidal in section, 620mm long, 102mm high and 65mm wide at its widest point on the lower side. There is a semi-circular notch in the centre of its upper side which is 25mm in diameter (where a tenon would have been fitted to stabilise it within the wooden stock). It is possible that the wider part of the core is actually the upper side, i.e. that it is displayed upside-down in the figures. There will have been one or two of such cores in the wooden stock on both stock-wings.¹ It weighs 26kg – incidentally, around one Greek talent. Despite its notional age² and the fact that it probably spent the better part of that period under water, it is in good, albeit corroded condition, with remains of marine growth all over the surface.

It shows a distinct similarity to a series of cores from the Tektaş Burnu shipwreck published by Trethewey³ – as well as to other so-called Type IIa lead anchor stock cores as described in Haldane’s typology from 1984.⁴

¹ Cf. BASS et alii 2006, 4, Fig. 3C.
² The possible period in which these anchors were in use is given as between as early as the late 6th and the early to mid-2nd Century BCE: HALDANE 1984, 7; EISEMAN 1980, 45.
³ TRETHEWEY 1999, 9, TRETHEWEY 2003, 105-114.
⁴ HALDANE 1984, 4.
Fig. 1-5. The Fort Bovisand Anchor Stock Core (drawings by Peter Holt); © The SHIPS Project – used with permission http://www.shipspace.org/Finds/Fd_09A15AnchorStock.html (09.07.2022).
which correlates for the most part with Kapitän’s typology published in the same year, wherein the type is similarly defined as a Type 2a wooden anchor with a lead-filled stock.6

The core has not undergone any invasive scientific analysis. It was initially considered to extract a sample and submit it for lead isotope provenancing.6 Due to the possible overlap of lead isotope ratios however, provenance analyses to distinguish between British and Mediterranean lead, despite being geographically remote, may not bring an unequivocal result.7 The museum therefore decided against destructive sampling. The aim of this article is thus to bring the Anchor Stock Core from Fort Bovisand into the academic record, while trying to address the question of the (un)likelihood of it being made of lead from British mines, without isotopic analysis.

Although lead, in the Mediterranean, is a common by-product of silver mining at least since exploitation began at Laurion8 – in the British Isles it is less so. The probable beginnings of large-scale lead-exploitation can be dated to the Claudian conquest. Several ingots have been recovered from the Mendi; one dated 49 CE,9 while further ingots have been dated to the reign of Vespasian.10

Earlier sources for lead mining in the British Isles pre-dating the Roman Conquest are scarce. The earliest lead artefact in Britain, found near the Scottish border, is a lead-bead necklace which has been dated to the Early Bronze Age.11 A study into lead isotope concentrations within tooth enamel concluded that concentrations within the teeth of Britons were never above (median) 0.1 mg kg\(^{-1}\) during the entire prehistoric period, with the highest (i.e. 0.1 mg kg\(^{-1}\)) coming notably from individuals from the Neolithic. In contrast, from the 1\(^{st}\) to 4\(^{th}\) Centuries CE, concentrations increased significantly to median figures of 1.21 mg kg\(^{-1}\), suggesting that large-scale lead mining was being performed in Britain only from the start of Roman conquest, and that the appearance of increased lead concentrations only during the Romano-British period supports the observation that people “had little use for (lead) until the plumbing revolution of Greco-Roman times”.12 In contrast, lead anchor stock cores were in use centuries earlier.13

There have been further discoveries of lead anchor stock cores in recent years;14 perhaps most notably during the two diving seasons of the Moroccan Maritime Survey (MMS) at Cap Spartel near Tangier, in 1999 and 2002.15 In the first survey season, one Type IIA/2a core was found with the wood from the stock still attached.16 While it was left in situ on the seabed, a sample of the wood was taken and subsequently C\(^{14}\)-dated to a range between 785–400 BCE. This range falls within the lifespan of Type IIA cores as described by Haldane.17 In addition, lead isotope provenance analysis was performed on samples from six anchor pieces recovered from both survey seasons, and the conclusion was reached that while Italy is an unlikely source, the ratios indicate that they could be compatible with mines from Southern Spain.18

In conclusion: the Anchor Stock Core from Fort Bovisand is probably not made of British lead, because lead mining on a scale which would allow for the manufacturing of an anchor part this size only began a few hundred years later. Compared to other recently discovered anchor stock cores, given their proximity to Cadiz and other Punic settlements in southern Iberia, it may have come from a Phoenician ship. Weighing one Attic talent, the Fort Bovisand Anchor Stock Core could be Greek. In the absence of firm scientific data however, it could have come from anywhere and its origin must remain an open question.

ACKNOWLEDGEMENTS:

My Prof, Philippe Della Casa, for enduring endless dialogue (or rather monologue) over the years about that Anchor Stock Core from the UK – thank you (and my other Profs: Graham Shipley, Andreas Victor Walser, Roberto Risch); very many thanks also to the two anonymous reviewers for their valuable comments and advice; Fiona Pitt, for your benevolence, all these years – thank you; Marcus Heinrich Hermanns, for all your support and encouragement – thank you; Zofia Stos-Gale, for your help and confidence – thank you; Peter Holt, for reigniting my interest in the dormant core – thank you; my wife, children and parents – thank you.

REFERENCES

BASS/CARLSON/POLZER 2006

Bass, G. F./Carlson, D. N./Polzer, M. E., A Brief History of Ships’ Hulls and Anchors as Revealed Along the Turkish Coast by the Institute of Nautical Archaeology. In: Avunç, Betül (ed.), Hayat Erkan’a Armagan; Kültürün Yansıması / Studies in Honor of Hayat Erkanal; Cultural Reflections (İstanbul: Homer Kitabevi ve Yayıncılık Ltd), 138-144.

BRILL/WAMPLER 1967

Brill, R. H./Wampler, J. M., Isotope Studies of Ancient Lead, American Journal of Archaeology 71/1, 63-77.

EISEMAN 1980

Eiseman, C. J., Greek Lead, Expedition 20, 41-47.

ERBATI/TRAKADAS 2008

GALE 1980

Gale, N. H., Some aspects of lead and silver mining in the

5 Kapitan 1984, 36-37.
7 Brill/Wampler 1967.
8 Gale 1980, 177-178.
9 But see Whittick 1982, 113-115, who considers it to be a commemorative plaque.
13 Cf. chronology of wooden anchors in Haldane 1984, 13, Fig. 5.
14 See e.g. Rosloff 2007; Van Duijvenvoorde 2012.
15 Trakadas/Claesson 2001; Trakadas 2002; Erbati/Trakadas 2008; Trakadas/Erbati 2009.
16 Trakadas 2002, 19; Erbati/Trakadas 2008, 45.
17 Supra, nr. 4.

HALDANE 1984

KAPITÄN 1984
Kapitän, G., Ancient Anchors – Technology and Classification, International Journal of Nautical Archaeology 13/1, 33-44.

MONTGOMERY/EVANS/CHENERY/PASHLEY/KILLGROVE 2010

ROSLOFF 2007

STOS-GALE/GALE 2009

TRAKADAS/CLAESSON 2001

TRAKADAS 2002

TRAKADAS/ERBATI 2009

TRETHEWEY 1999

TRETHEWEY 2001
Trethewey K., Lead anchor-stock cores from Tektaş Burnu, Turkey, International Journal of Nautical Archaeology 30/1, 109-114.

TYLECOTE 1986

TYLECOTE 1987

VAN DUIVENVOORDE 2012

VILLA 2009

WHITTICK 1982
Whittick, G. C., The Earliest Roman Lead-Mining on Mendip and in North Wales: A Reappraisal, Britannia 13, 113-23.