CONTENTS

STUDIES

ANCIENT HISTORY

Annamária – Izabella PÁSZINT
Prosopographia Ponti Euxini. Byzantion 5

Ioan Carol OPRIȘ
An Anonymous Statio of Classis Flavia Moesica and Later Flaviana. All We Know For Now About Roman Rasova (Constanta County, Romania) ... 47

NUMISMATICS

Dmitriy N. KHMELEVSIIY, Valeriy V. KRUTILOV†, Maria V. NOVICHENKOVA
An Imitation (Fourrée) of Roman Republican Denarius Serratus from the «L-1» Excavation Area in Olbia Pontica (Ukraine) ... 65

ARCHAEOLOGICAL MATERIAL

Marius-Mihai CIUTĂ, Colin P. QUINN,
Radu V. TOTOIANU
Radiocarbon Data of Funerary Discoveries from Middle Bronze Age in the Mureș Valley. The Wiitenberg Cemetery from Limba-Oarda de Jos (Alba County, Romania) ... 75

Victor SAVA, Adrian URSUȚIU
The Late Bronze Age Gâva Pottery from the Lower Mureș ... 84

Alexander K. HARIZANOV
Vaulting Tube Production in Dacia Mediterranean: A Case Study from the Strymon Valley in its Regional Context ... 128

Stanislav GRIGORIEV
The Evolution of Antler and Bone Cheekpieces from the Balkan-Carpathian Region to Central Kazakhstan: Chronology of "Chariot" Cultures and Mycenaean Greece ... 148

DIGITAL ARCHAEOLOGY

Valeriu SÎRBU, Dan ŞTEFAN,
Maria-Magdalena ŞTEFAN, Eugen Silviu TEODOR,
Ionel CÂNDEA, Alexandru POPA,
Sebastian MATEI, Dragos MĂNDESCU,
Lucica SAVU, Roxana MUNTEANU,
Dan BUZEA, Valerii KAVRUK, Costin CROITORU,
Stânica PANDREA, Călin ŞUTEU, Bogdan CIUPERCĂ,
Daniel GARVÂN, Aurel VîLCU, Theodor ISVORANU
Unhiding Forested Landscapes. The Archaeological Index of South-Eastern Carpathians ... 190

REVIEWS

Csaba SZABÓ

Mihaela GLIGOR
Ferdinand Addis, Rome: Eternal City, UK, Head of Zeus, 2018 ... 205

Design & layout: Petru Ureche

Journal of Ancient History and Archaeology No. 8.2/2021
VAULTING TUBE PRODUCTION IN DACIA MEDITERRANEANA: A CASE STUDY FROM THE STRYMON VALLEY IN ITS REGIONAL CONTEXT

Abstract: In 2017 a new Late Roman settlement was discovered on the road bed of the Struma Highway, near the modern day village of Moshtanets, Blagoevgrad district. The archaeological site was located on a slope and adjacent river terrace, close to the right bank of the Struma River (ancient Strymon). During the excavations, a ceramic kiln and a deposit of ceramic tubes were discovered in its southern sector. This contribution is aimed at presenting both the kiln and the finds, identified as terracotta vaulting tubes (tubi fittili). The latter are described and analysed in the context of similar artefacts from the northern half of the Balkans, and especially from within the Late Roman province of Dacia Mediterranea. In conclusion, some observations are made concerning the purpose and possible recipients of these locally made products.

Keywords: Moshtanets, vaulting tubes, local production, Late Roman period, Dacia Mediterraneana.
unearthed within the southern part of the archaeological site (Sector I), with several more found in its central zone (Sector II). The latter have been separated from the nearby necropolis (Sector III) by a stone wall, supposedly erected for the purpose (Fig. 2). The buildings and facilities from Sector I were dated between the 3rd and the third quarter of the 4th c. AD, the ones from Sector II – to the 4th c. – first half of the 5th c. AD. *Terminus post quem* for the use of the necropolis is a coin of Nerva found in one of the graves, while its terminal date has been set close to the mid-4th c. AD.

During the Roman period this section of the Struma valley was part of the city territory of *Pautalia*, within the province of Thrace. *Macedonia* was probably located no less than 15-20 km to the South of Moshtanets, near the Kresna Gorge – an 18 km long steep valley, formed by the Struma River, which served as a natural border between the two provinces.

One of the last epigraphic documents, proving the affiliation of this region to the territory of *Pautalia*, was the famous letter of the inhabitants of the village of *Scaptopara* to emperor Gordian III and his response, composed in the AD 238. Whether the modern Blagoevgrad district was still part of the territory of the Roman city after the establishment of the new province of *Dacia*, later *Dacia Mediterranea*, it is

Fig. 1. Map with find-spots of vaulting tubes and vaulting pots in *Dacia Mediterranea* and the neighbouring provinces from the 3rd – 4th c. AD /with provincial and diocese borders of the 4th c. AD and abbreviated provincial names: Mc – *Macedonia*; Dd – *Dardania*; MP – *Moesia Prima/Superior*; DR – *Dacia Ripensis*; DM – *Dacia Mediterranea*; MS – *Moesia Secunda/Inferior*; Sc – *Scythia*; Hm – *Haemimontus*; Thr – *Thracia*; Eu – *Europa*; Rh – *Rhodope* (provincial borders after DINTCHEV 2006, 99, Fig. 1; BĂJENARU 2010, 231, Pl. 1, with additions and corrections by A. Harizanov).

5 See GEROV 1988, 139-140; TATSCHEVA 2004, 87-88.

5 GEROV 1988, 140. According to M. Tatscheva the border line passed to the South of the gorge (TATSCHEVA 2004, 88).
7 Dacia (*Dacia Aureliana*) was founded by Aurelian in AD 271-272, after
unclear. However, there is also no evidence for its inclusion in the neighbouring province of Macedonietia (later split into Macedonietia Prima and Macedonietia Salutaris (afterwards Secunda)). So, for the time being, it seems more plausible that during the late 3rd and the first half of the 4th century the region remained under the administration of Pautalia, or at least within the limits of Dacia Mediterranea (Fig. 1).11

II. THE CERAMIC KILN

The kiln was found in Sector I (square E5), situated in a relatively flat terrain near a rising slope to the West, where a cluster of buildings has been excavated (Fig. 2).12 It was dug partly into a layer of brownish soil, with low concentration of ceramic material, and partially into a yellowish sterile stratum (Fig. 3).

The installation belongs to the two-chambered kilns with vertical draught. The combustion chamber was sunken, with close to circular floor plan (Fig. 4; Table 1). It has been shaped into the ground and lined with clay plaster. The bottom of the chamber followed the natural slope of the terrain. A central pillar of rectangular plan was found inside the chamber. It was erected of five horizontal layers of the kiln could be associated with the installations of type I/a from the typology of the antique ceramic kilns from the territory of modern Bulgaria, which were the most common structures in the region during the pre-Roman, Roman and Late Roman periods. As customary in the time after the Roman conquest of Thrace, the installation was built partially of reused ceramic building material, which is also an indication for the presence of earlier constructions in the nearby area.

An archaeomagnetic study on samples from the kiln provided a date for the last firing of the installation between AD 286 and AD 334, which corresponds with the archaeological dating of the finds from the surrounding area.16

10 For the history and territory of the Late Antique province of Macedonietia, later split into Macedonietia Prima and Salutaris (later Secunda), see SNIVELY 2010, 545-571, VESEVSKA 2019, 145-154.
11 For instance, the city of Bargala, which was part of Dacia Mediterranea at least until AD 371, has been transferred during the 5th or the early 6th century to the province of Macedonietia (Macedonietia Secunda) – see VELKOV 1977, 98; SNIVELY 2010, 549-550. So it is possible that similar changes occurred in this later period elsewhere, but for now no such information exists.
12 The description of the kiln is based on my personal observations, made during the excavation of the facility in August 2017.
13 The analysis was made by the team of Prof. Dr. M. Kovacheva and Assoc. prof. Dr. M. Kostadinova-Avramova from the National Institute in Geophysics, Geodesy and Geography – BAS.
14 Additional information, provided by the Dig Director of the site, Dr. Galina Grozdanova (assistant professor, NAIM-RAS).
III. THE CERAMIC TUBES

More than 30 ceramic tubes were found deposited into a pit, located inside one of the premises of building no. 1. The assemblage consisted of entirely preserved examples as well as fragmented pieces. Some of the finds had traces of mortar, most often on their outer surface (Fig. 10)\(^\text{[17]}\).

Two major types of tube shapes were recognised, both wheel-made and hollow. At least some of the finds could have had separately made bodies and nozzles, which were attached to one another while still not thoroughly dry.

The first type of tubes (type I) comprised examples with thick, cylindrical bodies, broad, square shoulders (some with a shallow groove on the upper side) and conical nozzles (Fig. 11; Table 2). Some of them had slightly curved or inclined bodies and/or asymmetrical shoulders. The fabric was overall fine, with sand, mica and smaller quantities of gravel being used as tempers (Fig. 12). The tubes were evenly fired, with orange-beige to orange-red colour of both sides and the cross-section. Their outer surfaces were mostly smoothed, while some of the bodies and/or the nozzles had production marks or (more likely) purposely left diagonal and horizontal wheel-made grooves. The internal surfaces were smoothed, most often only in the lower part of the bodies and upper part of the nozzles (near the two opposite openings), and also at the junction points between the two parts (body and nozzle).

The second type of tubes was of similar fabric and colour to the first one. The major divergence between this and the previous group is in the overall shape and thickness (Figs. 13-14; Table 2). The tubes of type II had thinner and smaller in diameter bodies, again with close to cylindrical shape, but in some cases with visible narrowing in the central part (Fig. 15). In one case, the entire body had slightly conical shape. The shoulders of these tubes were narrower than those of the first one, only occasionally with a shallow groove on top, while others were directly protruding to the nozzles. The latter had conical lower and cylindrical upper parts. Some of the tubes had smoothed external sides, while others had visible wheel-made horizontal or slightly diagonal grooves.

The erection of building no. 1, where the tubes were found, is dated to the last quarter of the 3\(^\text{rd}\) c. AD, while its final period of use is dated to the 360s. In concordance with this dating, the tubes were most likely deposited into the pit at some point between the late 3\(^\text{rd}\) and the first half of the 4\(^\text{th}\) c. AD\(^\text{[18]}\).

Apart from the deposit, several stray finds of almost entirely preserved and fragmented tubes, discovered in the same sector as the kiln and the assemblage, proved important for the present study. One of these finds was an overfired example (Fig. 16), while another was a fragment of production waste (Fig. 17), both with the characteristics of the tubes of type I. In addition, some of the tubes of both types, found within the deposit, had minor traces of over-firing.

IV. DISCUSSION

1. The tubes – local production or imports

The discovery of both firing installation and production waste of similar dating with the deposit is a strong indication for the local production of most of the tubes. Furthermore, the relatively small size of the kiln could serve as an indication for its purpose – firing of small to medium sized clay-formed objects\(^\text{[19]}\). Of course, it cannot be excluded that some of the tube finds could have been imported and used as models for the locally made items\(^\text{[20]}\). Also worth noting is the possibility of simultaneous (or interchanging) firing of the tubes with other ceramic articles, needed in the everyday life of the villagers\(^\text{[21]}\).

Having in mind the internal diameter of the kiln’s firing chamber and two reliable possibilities for the reconstruction of its superstructure\(^\text{[22]}\), it could be estimated that between 90 and 120 tubes could have been fired there at once. The tubes were most likely positioned standing on their lower sides and placed inside one another, on several tiers (Fig. 18). Such an arrangement could have enabled the good circulation of the hot air coming from the combustion chamber and the thorough firing of the manufactured artefacts. Similar

\[^{17}\text{The description of the tubes is based on my personal observations, when studying the finds. Most of drawings were made by Kristina Koseva (PhD Candidate, NAIM-BAS).}\]

\[^{18}\text{Additional information by Dr. Galina Grozdanova.}\]

\[^{19}\text{For examples of kilns of similar size and supposed function, see HARIZANOV 2019a, 387; 471-472; 491-492; 525-526; 541; 567-569, etc. A very simple explanation for the preference of small vs. bigger kilns is the need of much smaller amounts of fuel for the firing of the limited number of artefacts usually produced by such workshops.}\]

\[^{20}\text{Vaulting tubes, for example produced in North Africa, were subjected to export as proved by the finding of such items among the cargos of sunken ships – see discussion and cited literature below.}\]

\[^{21}\text{The lack of specialisation and the local production of most of the needed ceramic items were common for certain stages of the Late Antique period in the Balkans (see HARIZANOV 2019a, 121; 192-199).}\]

\[^{22}\text{For the superstructure of the Roman and Late Antique kilns in the territory of modern Bulgaria, see HARIZANOV 2019a, 60-65; HARIZANOV 2019b, 16; 24.}\]
internal organisation (but of kiln furniture and not fired products) had the Roman sigillata kilns of Western Europe, where specially designed tube constructions were used as chimneys (having them placed atop the ventilation openings of the perforated floor) thus separating the fine wares from the ash and smoke from the fire and at the same time allowing good air circulation and even distribution of the heat inside the entire upper chamber.

2. The tubes – design, function and origin

The tubes from the assemblage have relatively short hollow bodies (in relation to their internal diameter), almost square or narrow shoulders and open conical nozzles. In addition, their sometimes asymmetrical shoulders and inclined bodies (most often observed on tubes of type I), and especially the smaller external diameter of the nozzles in relation to the internal diameter of the tubes’ bases, could have all been purposely made. This design is typical for the so-called terracotta vaulting tubes (Fig. 19), which were used for the erection of internal domes, vaults and similar architectural constructions across the Empire.

Vaulting tubes (Latin tubi fittili) first appeared during the 3rd – 2nd centuries BC. The examples known to date, come from the sites of Morgantina in Sicily and Cabrera de Mar near Barcelona in Spain. These first tubes were different to the shapes described here – much longer and without nozzles (so-called “bullet shape”), and were designed so that each tube could fit into the adjacent one and afterwards be filled, bonded and covered in mortar. They were found in bath buildings, erected before the implementation of Roman concrete, and their presence was most likely owed to the need for safer and longer lasting constructions.

After this initial period of experimentation, during the centuries before and after Christ when bullet-shaped tubes were used in baths, vaulting pots (also termed as kiln pots; some close in shape to conventional cooking pots) were often employed in the erection of kilns’ firing chambers. The first known examples from Italy date to the 2nd – 1st c. BC, while the ones from Pompeii in particular have a terminus ante quem in AD 79. During the Augustan period the technique had already spread to the territory of France, while in the 2nd and 3rd c. AD it is attested along the Rhine limes and also in the East (Pompeipolis). According to L. Lancaster, the use of vaulting pots for the erection of kiln superstructures was common up to the 3rd c. AD. However, vaulting tubes seem to have been used for the same purpose even later, for example in the region of ancient Sinope where a number of kiln domes were built in this way between the 4th c. and the 6th or even the 7th c. AD.

The continuation of the technique, precisely for the use of vaulting tubes in buildings (apart from single examples), has been traced to North Africa, where it first appeared during the 2nd c. AD and became widespread around the end of this, and throughout the next, century. It was in the aforementioned region that the tubes with nozzles seem to have been developed (first in tomb architecture), which according to L. Lancaster allowed for their easier use (the better and more sturdy fit excluded the need for wooden frames) along with a greater diversity of vaulting shapes being made possible. They were found in the context of both public and private buildings, but their application is best attested in bath complexes. During the Early Byzantine period vaulting tubes were also used in the construction of religious buildings, such as the San Vitale church at Ravenna.

The initial spread of nozzle tubes during the Severan period is ascribed mainly to the army, with cited examples from military sites in both North Africa (Lambaesis, Bu Ngem, Aqae Flavianae) and the rest of the Empire (Caerleon, Chester, York, Dura-Europus). Another key factor in the exportation of the technique is believed to be the increase in production and distribution of African goods, such as grain, wine, olive oil, fish products and also ceramic fine wares and oil lamps, starting from the 2nd c. AD onwards.

Vaulting tubes have been occasionally discovered in shipwrecks (usually along with amphora-borne commodities and sometimes fine wares) near the coasts of Italy (including Sicily and Sardinia), Spain, France and the Adriatic, and in one case – in debris from a harbour deposit. While at least some of the wreck finds could have been a minor side export product (to be used as a model for local producers?) or parts of ship-bound construction, others, for example the Levanzo I deposit with its more than 150 preserved tubes (out of maybe 400-500), were almost certainly a share of a trade cargo.

Table 2. Dimensions of the Moshtanets tubes (based on examples with entirely preserved body parts).

<table>
<thead>
<tr>
<th>Dimensions → (min. – max., in cm)</th>
<th>Overall height</th>
<th>Body height</th>
<th>Nozzle height</th>
<th>Body thickness</th>
<th>Nozzle thickness</th>
<th>Shoulders diameter</th>
<th>Body inner diameter (bottom)</th>
<th>Nozzle upper (outer) diameter</th>
<th>Nozzle lower (outer) diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>20.8-23</td>
<td>11.8-16.2</td>
<td>6.6-7.6</td>
<td>1.6-2.2</td>
<td>1.1-1.7</td>
<td>11.9-14.2</td>
<td>8.1-10.6</td>
<td>5.1-5.6</td>
<td>7.8-9.2</td>
</tr>
<tr>
<td>Type II</td>
<td>21.8-22.5</td>
<td>13.5-16.3</td>
<td>6.8-7.8</td>
<td>0.8-1.6</td>
<td>0.6-1.3</td>
<td>9.6-11.1</td>
<td>7.8-9.6</td>
<td>5.2-5.7</td>
<td>7.2-8.1</td>
</tr>
</tbody>
</table>

26 LANCASTER 2015, 105.
27 KASSAB TEZGÖR/ÖZSALAR 2010, 199-216.
29 WILSON 1992, 117-118; LANCASTER 2015, 114; 126.
30 LANCASTER 2015, 108-112.
31 LANCASTER 2015, 112-114.
33 See VANN 1993, 29-34, for the discovery of two nozzle tubes of uncertain context and date within debris from the harbour of Caesarea Maritima.
34 WILSON 1992, 120; LANCASTER 2015, 115.
35 See ROYAL 2015, 127-144, for the description of the deposit, the
Fig. 3. The ceramic kiln – plan and cross-section (author A. Harizanov).
3. VAULTING TUBES AND VAULTING POTS IN THE BALKAN PROVINCES OF THE EMPIRE

Initially thought to have been distributed mainly in North Africa and the western part of the Empire, the use of vaulting tubes appear to have been also common for the Roman and Late Roman Balkan provinces. A case study for the site of Timacum Minus (located within the Roman Moesia Superior and the Late Roman province of Dacia Ripensis) have provided data for the discovery of such items also in Lychnidus (Epirus Nova), Sirmium (Pannonia Inferior, later Pannonia Secunda), Viminacium (Moesia Superior, later Moesia Prima), Drobeta (Moesia Superior/Dacia, later Dacia Ripensis), Novae (Moesia Inferior, later Moesia Secunda), Sarmisegetuza, Apulum, Potissa, Jidova (all four located within the Dacias beyond the Danube that existed until the reign of Aurelian) etc., with most of the cited examples coming from contexts of shipwrecks known to date and the possibilities for trading vaulting tubes as one of the supplementary products of annonae shipments.

Wilson 1992, 113-121.

Fig. 4. The ceramic kiln – plans with the lower part of the perforated floor and the combustion chamber, and cross-sections of the perforated floor and the stoking channel (author A. Harizanov).

of the 3rd and the 4th c. AD. Nozzle tubes of similar design were also discovered in the Roman fort at Gherla, again in Dacia (Dacia Porolissensis), where the finds were conversely described as water pipes. Yet, the most interesting case from Dacia is to be found near the Roman fort at Brâncoveneste, where a deposit of 107 nozzle tubes was discovered inside an extramural ceramic workshop. One of the tubes bore an imprint of a replica of a denarius of Marcus Aurelius (issued in AD 144), while the workshop probably functioned during the second half of the 2nd and the beginning of the 3rd c. AD.

The close relationship between the initial spread of this technology with the military proposed for the Severan period, seems to fit quite well with the evidence from the region in question. Such was most likely the case for of the finds from Potissa, Jidova, Brâncoveneste and Gherla (?), while those from Sirmium, Viminacium, Drobeta and Apulum.

37 Bjelić/Nikolić 2020, 173-199.
38 See Protase/Gudea/Ardevan 2008, 470, Pl. LXI/6; 478, Pl. LXI.
39 Sidó 2018, 55-68.
were discovered in civic public buildings, but in both cases (military and civic) mainly identified as baths40.

The artefacts from the territory of modern Bulgaria also come from both military and civic contexts. The examples from Novae (Fig. 20) were found within the large legionary baths, and were most likely used in a reconstruction of the complex, which occurred in the Severan period or between the reigns of Gordian III and Constantine the Great41. Vaulting tubes with conical nozzles were found again in a bath complex (the south-eastern baths) at Oescus (a legionary camp, later Roman colonia and finally a Late Roman town with military garrison, firstly within the province of Moesia Inferior, later incorporated in Dacia Mediterranea)42. However, the use of the building, placed roughly in the 3rd – first half of the 4th c. AD43, does not provide enough evidence for the precise dating of the tubes’ appearance in the town’s architecture.

Vaulting tubes or pots (described as conical, without nozzles and with one end closed)44 were used in a bath building from the supposed Roman villa and centre of an imperial domain at the modern village of Madara, near Shoumen (Thracia/Moesia Inferior, later within the province of Moesia Secunda) (Fig. 1.5)45.

Open cylindrical-conical vaulting pots were found on the site of a possible Roman sanctuary and later Early Byzantine port town on St. Atanas cape near modern day Byala, Varna region (within the Roman province of Moesia Inferior, later part of Moesia Secunda) (Figs. 1.6 & 21). The finds were discovered within the remains of a mid-3rd c. AD kiln and were most likely used for the erection of its superstructure46, although other possibilities have also been noted47.

For now, the use of nozzle tubes in the territory of modern Bulgaria is best attested precisely within the limits of the Late Roman province of Dacia Mediterranea, where such items are found in the towns of Serdica, Germania, at the Late Roman residential complex Scretisa near Serdica. Lastly, the place of discovery, which is closest geographically to the site at Moshtanets, is located in the vicinities of the modern village of Poleto, near Simitli, on the left bank of the Struma River, very close to the northern side of the Kresna gorge.

In the town of Serdica (a military establishment, later a Roman and finally a Late Antique town, first incorporated into the province of Thracia, afterwards capital of Dacia Mediterranea)48 two nozzle tubes filled with mortar were found in a long vaulted room (Fig. 22A), part of a supposed mithraeum from the late 3rd – early 4th c. AD49. The finds had cylindrical bodies and conical nozzles, with the overall shape being closer to type II of the Moshtanets assemblage50.

Vaulting tubes filled with mortar were also discovered during the excavations of the Late Roman residential complex Scretisca and the Early Byzantine fortress Kpatinkapa near nowadays Kostinbrod (Fig. 1.4). Unfortunately, the finds have been reused as building material outside their original context so their precise location within the residential complex is unknown51.

Nozzle tubes, again filled with mortar, were found during the 1950s excavations in the Roman auxiliary fort and Late Roman town of Germania (nowadays Sapareva Banya) (Figs. 1 & 22B). These finds had shorter cylindrical bodies and almost cylindrical nozzles (with both tube parts having slightly smaller diameters in their middle areas). The discovery of the tubes in a disturbed context does not allow their attribution to any specific type of building or precise dating (the rest of the materials and the excavated buildings were dated to the 3rd – 6th c. AD)52. In the same article, unpublished examples of vaulting tubes, found in the Early Byzantine fortress at Hisarlaka next to Pautalia (modern Kyustendil) and a site near the village of Kadin most (modern Nevestino – Fig. 1.3), are mentioned53.

Of interest to the present study are also the tubes discovered during the excavations of a production site situated next to a presumed (but not investigated) Roman vicus in the vicinities of the modern village of Poleto, Simitli district (Fig. 1.2). The archaeological site was unearthed in the course of construction work near the Struma River in the 1980s. One lime kiln, a water fountain and a ceramic kiln were excavated. Among the large amount of ceramic material (building ceramics, coarse and fine wares, oil lamps) were several tubes54. While some could have been used as water pipes, the rest of the illustrated finds have characteristics similar to those of tubi fititi (Fig. 23). The tubes in question have cylindrical bodies and cylindrical or slightly conical

40 BJELIĆ/NIKOLIĆ 2020, 175-176

41 For the history of the military camp of Legio V Macedonica, the Roman colonia founded by Emperor Trajan and the Late Roman town with a military garrison, see for instance IVANOV/KOVACHEVA 2002, 31-58.

42 See IVANOV 2006, 154-155.

43 See DINTCHEV 2003 for the excavations of the Late Roman residence and the fortress built on top of it during the Early Byzantine period. For the tubes in particular, see DINTCHEV 2003, 84, note 280.

44 For the earliest development of Serdica, see lastly IVANOV 2020; for the post-Trajanic period of the town and its territory, see GEROV 1988, 164-168; VELKOV 1977, 93-95; BOYADJIEV 2002, 125-180.

45 See BJELIĆ/NIKOLIĆ 2016a, 11-66; JASIEWICZ 2016, 87-118, for detailed description and chronology of the baths, BIERNACKI 2016b, 67-86 – for the used ceramic building material and the vaulting tubes in particular. See dimensions (taken by the available drawing from the original publication) in Table 3.

46 For the history of the military camp of Legio V Macedonica, the Roman colonia founded by Emperor Trajan and the Late Roman town with a military garrison, see for instance IVANOV/KOVACHEVA 2002, 31-58.

47 See ANTONOVA 1960, 34-37, for the discovered tubes; see DREMISOVA-NELCHINOVA 1984, 74-124; DINCHEV 1997, 74-79, for overall description of the archaeological site, its chronology and function. For the territorial affiliation of the presumed domain in the Roman period, see lastly HARIZANOV 2020, 104-105, and the cited literature. For the Late Antique period, see VELKOV 1977, 106.

48 See HARIZANOV 2019a, 379-380. Both the place of discovery of the pots (inside the combustion chamber and the stoke pit) and the traces of over-firing (or multiple firings?) on some of their surfaces are indications for such use.

49 See YOTOV 2019, 55-63.
nozzles, with wheel-made grooves visible mostly on the inside. One of the finds is much longer than the others, however with similar shape and diameters of the body and nozzle55.

According to the researcher, the site has functioned as a production centre for lime and ceramic building material for the nearby Roman village. In concordance with the discovered pottery and coins (of which three were identified – of Septimius Severus, Gordian III and Claudius II), it was dated to the late 2nd – 3rd c. AD56. Furthermore, the presence of large amount of fragmented domestic pottery at this site, apart from its usual household context, led to the hypothesis that it was likewise produced on the spot, along with the other construction materials discovered57.

4. Purpose of the Moshtanets vaulting tubes

In view of the dated examples of vaulting tubes described so far and places of their application (both in the Balkans and the rest of the Empire), the assemblage examined here was most likely intended for the construction of a bath building. Such a designation fits well into the chronological distribution of the nozzle tubes in the period in question (late 3rd – early 4th c. AD), when the Moshtanets workshop was supposedly active. Of similar use were the vaulting tubes in Novae, Oescus, Madara (here of different shape), Sirmium, Viminacium, Timacum Minus, etc. The examples from Serdica and Germania come from contexts not securely identified, but most likely also public buildings, while those from Scetisca were found reused, outside their original context. Nothing could be said about the supposed tube finds from Hisarlaka and Kadin most.

No bath building (or other structure with at least partly preserved vaulted ceiling) was discovered during the excavations of the Moshtanets site, which however does not exclude the possibility of the presence of such a construction in the unstudied part of the Late Roman village.

In 2017 and 2018 another Roman and Late Roman settlement was discovered on the road bed of the Struma Highway, just several km to the North of Moshtanets, near the neighbouring modern village of Pokrovnik. The site in question was identified as a Roman and Late Roman villa (3rd to mid-5th c. AD) with adjacent vicus (second half of the 2nd / 3rd c. – 4th c. AD). Within the Late Roman villa complex (late 3rd – mid-5th c. AD) a small bath was found, however without any indications for the use of vaulting tubes. Furthermore, about a dozen ceramic kilns were unearthed within the villa and the vicus areas, most likely used during the 3rd and the 4th c. AD58. No traces of vaulting tubes (or vaulting pots for that matter) were found among their ruins59.

Given that both Pautalia and Germania were situated near mineral water deposits, which were exploited during the Roman and Late Roman periods (and are still in use today)60, it could be suggested that the output of the Moshtanets workshop was directed towards thermal construction projects in one of the two towns61. However, the distance among the three centres62, along with the presumed limited output of the ceramic workshop in question63, could make other possibilities for local distribution of its products to be more plausible. In this context, one cannot exclude the Roman settlement of Scetopara, already mentioned (but known from an inscription of earlier date), which was most likely located much closer to Moshtanets64 and at the same time situated near mineral water deposits, while its baths were used by both indigenous people and travellers coming to

55 See dimensions (taken by the available drawings from the original publication) in Table 3.
56 See KULOV 2007, 134-135; 139-140.
57 HARIZANOV 2020, 116.
the nearby trade fair. It could likewise be hypothesised that the vaulting tubes were produced for a private building, for example situated in the estate of one of the local landlords. To conclude, smaller sized buildings from the nearby region (private or public balnea, or other ceilinged constructions of limited size) are the much more probable recipients of these products.

For the moment, the reason for the deposition of the batch of tubes inside their place of discovery also remains unclear. Although some of the finds show slight traces of mortar on their outer surfaces, the lack of such on the inside indicates that they had not been used properly and that these remnants of plaster are likely owed to debris from the rest of the deposit or from the ruins of the building.

CONCLUSION

Advancement in the study of vaulting tubes within the boundaries of the Empire in recent years is bringing us closer to discovering the actual range of their spread and use during the Roman and Late Antique periods. Although many controversies in relation to the nature of their distribution patterns remain, what seems certain is that there was an export of know-how, either directly from the North African area or also indirectly via other economically active provinces to other developing Roman territories. In view of the latter, the appearance of vaulting tubes in Dacia Mediterranea during the late 3rd and the 4th c. AD, both in construction contexts and as presumable local products, comes as no surprise, since it coincides with the emergence of the zone of the dioceses of Thracia, Dacia and Macedonia under the Tetrarchy and the Constantine dynasty, when this region became a background for major political events, economic reorganisations and grand architectural projects.

ACKNOWLEDGEMENTS

I am grateful to Dr. Galina Grozdanova (Assistant Professor, NAIM-BAS) for the opportunity to study the kiln and the deposit in person, and to publish the results, along with the additional information provided. I would also like to thank Kristina Koseva (PhD Candidate, NAIM-BAS) for the tube drawings and Dr. Orlene Mcilfatrick for proofreading important parts of the text.

REFERENCES

ANTONOVA 1960

BĂJENARU 2010
Băjenaru, C., Minor Fortifications in the Balkan-Danubian Area from Diocletian to Justinian (Cluj-Napoca: Editura Mega).

BIERNACKI 2016a

BIERNACKI 2016b

BJELIĆ/NIKOLIĆ 2020
Bjelić, I./ Nikolić, E., From an element to a composition: Reconstruction of a vault of terracotta tubes from Timacum Minus, Serbia, Starinar 70, 173-199.

BOBČEVE 1955

BOYADJEV 2002

DESBAT 1993

DINCHEV 1997
Dinchev, V., Rimskite vili v dnesnata bylgarska teritoria [Roman villas in the present-day Bulgarian lands] (Sofia: Agato).

DINCHEV 2003
Dintchev, V., Kasnorimskata rezidentsiya Scretica i roonvozantistskoto selishhte Kpati kekap [The Late Roman Residence Scretica and the Early Byzantine Settlement Kpati kekap]. Razkopki i prouchvaniya XXX (Sofia: NOUS).

DINCHEV 2006
Dintchev, V., Rannovizantiyskite kreposti v Bulgaria i sasednite zemi (v diotsezite Thracia I Dacia) [Early Byzantine Fortresses in Bulgaria and its Neighbouring Territories (In the Dioceses of Thracia and Dacia)]. Razkopki i prouchvaniya 35 (Sofia: Upi-Design).

DIMITROV 2019

DIMITROV/RAYCHEVA/RUSEV 2019
Dimitrov, Z./ Raycheva, M./ Rusev, N., Spasitelni arheologicheski razkopki na rimska vil rustika i selishte

GROZANOVA/HRISTOVA/FILIPOVA 2018

Grozdanova, G./Hristova, T./Filipova, S., Spasitelni arheologicheski proucuvaniya na obekt Moshtanets 1, Lot 3.1., AM “Struma” do Blagoevgrad [Rescue archaeological excavations of Moshtanets 1 site at Struma Highway, Lot 3.1.]. Archaeological Discoveries and Excavations in 2017, 377-380.

HARIZANOV 2019a

HARIZANOV 2019b

HARIZANOV 2020

Harizanov, A., Socioeconomic Aspects of Ceramic Production in Roman Thrace, Journal of Ancient History and Archaeology 7/2, 103-147. DOI: 10.14795/j.v7i2.532

IVANOV 2020

IVANOV 2006

IVANOV/KOVACHEVA 2002

IVANOV 1957

IVANOV 1910

Ivanov, Jor. Otchet za razkopkite pri Kadin most, Kyustendilsko [Rapport sur les fouilles de Kadin-most, arrondissement de Kustendil], Bulletin de la Société Archéologique Bulgare 1, 163-201.

JASIEWICZ 2016

KASSAB TEZGÖR/ÖZSALAR 2010

KATSAROVA 2005

KULOV 2007

Kulov, I., Antichen proizvodvstven centar kray Poleto, obshtina Simitli [Ancient production center at Poleto near Simitli], Archeologia XLVIII/1-4, 132-142.

LANCASTER 2015

Lancaster, L., Innovative vaulting in the architecture of the Roman Empire: 1st to 4th centuries CE (New York: Cambridge University Press).

MORENO ALCAIDE/ROMÁN PUNZÓN/RUIZ MONTES 2019

PROTASE/GUDEA/ARDEVAN 2008

REUTTI/SCHULZ 2010

ROYAL 2015

SHARANKOV 2012

SIDÓ 2018

SNIVELY 2010

Snively, C. S., Macedonia in Late Antiquity. In: Roisman, J./...

Studies

Journal of Ancient History and Archaeology No. 8.2/2021

138
Worthington, J. (eds.), *A Companion to Ancient Macedonia* (Singapore: Blackwell Publishing Ltd.), 545-571.

STAYKOVA-ALEKSANDROVA/STAYKOVA 2003

TATSCHEVA 2004

TORBATOV 2016

VELKOV 1977
Velkov, V., *Cities in Thrace and Dacia in Late Antiquity (Studies and Materials)* (Amsterdam: Adolf M. Hakkert).

VESEVSKA 2019

WATSON 2003

WILSON 1992

YOTOV 2019
Fig. 5. Photo of the ceramic kiln: initial stage of research (author G. Grozdanova).

Fig. 6. Photo of the ceramic kiln after the removal of the upper layer of the perforated floor (author A. Harizanov).
Fig. 7. Photo of the ceramic kiln: view from above of the lower layer of the perforated floor (author A. Harizanov)

Fig. 8. Photo of the ceramic kiln: view from above of the combustion chamber and the supporting pillar (author A. Harizanov)
Fig. 9. Photo of the ceramic kiln: final stage of research (author A. Harizanov)

Fig. 10. The ceramic tubes from Moshtanets (photo A. Harizanov).
Fig. 11. The ceramic tubes from Moshtanets: drawings of type I (authors K. Koseva, A. Harizanov).

Fig. 12. The ceramic tubes from Moshtanets: photo of examples of type I (author A. Harizanov).

Fig. 13. The ceramic tubes from Moshtanets: drawings of type II (authors K. Koseva, A. Harizanov).
Fig. 14. The ceramic tubes from Moshtanets: photos of example of type II (author A. Harizanov).

Fig. 15. The ceramic tubes from Moshtanets: photo of examples of type II (author A. Harizanov).

Fig. 16. The ceramic tubes from Moshtanets: photos of an overfired example of type I (author A. Harizanov).

Fig. 17. The ceramic tubes from Moshtanets: drawing and photo of a production waste (authors K. Koseva, A. Harizanov).
Fig. 18. Graphic reconstruction of liable stacking arrangements of the vaulting tubes inside the kiln’s firing chamber and possible setups of tube vaults (author A. Harizanov).

Fig. 19. Typological and chronological chart of vaulting tubes and vaulting pots (after LANCASTER 2015, 103, Fig. 68).
Fig. 20. Vaulting tubes from the legionary baths at Novae (after BIERNACKI 2016, 79, Tabl. VI; digital remastering and corrections by A. Harizanov).

Fig. 21. Possible vaulting pot from the kiln at Byala (photos and drawing by Valeri Yotov).

Fig. 22. Vaulting tubes from Serdica /A/ and Germania /B/ (after BOBCHEV 1955, 212, Fig. 7; IVANOV 1957, 223, Fig. 14).
Fig. 23. Tubes from the site at Poleto, Simitli district (after KULOV 2007, 136, Fig. 9; digital remastering by A. Harizanov).